Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(7): 8294-8305, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560823

RESUMO

The hierarchical zeolite is one of the most promising materials for catalytic applications. However, the effect of its pore connectivity on catalytic behaviors and coke formation has not clearly been revealed. In this contribution, we demonstrate the visualization of the mesopore architecture in three-dimensional perspectives together with the pore connectivity network of pore-opened hierarchical mordenite (MOR), fabricated by the seed-assisted template-free synthesis followed by the fluoride treatment via the electron tomography (ET) technique. Interestingly, the pore-opened zeolites clearly display higher catalytic performance (approximately 80% of ethylene yield) in ethanol dehydration with respect to the parent one due to their additional pore-opened structures connected to the external surfaces of zeolites. In addition, the effect of pore connectivity network on the coke location and type obtained from ethanol conversion has been observed. It was found that the porous structure of the etched sample is directly connected to the external surface, and then, the large area of crystals can contribute to the reaction. Conversely, only a small amount of closed mesopores is observed inside the crystals in the case of the untreated sample, and therefore, the molecules cannot easily penetrate inside crystals for the catalytic reaction. These results open up promising perspectives for the development of hierarchical catalysts including fabrication by the template-free synthesis approach, pore-architecture characterization, and catalytic applications.

2.
Microscopy (Oxf) ; 69(3): 141-155, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32115659

RESUMO

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials research with a particular focus on diffraction contrast ET for crystalline microstructures (superlattice domains and dislocations) including a demonstration of in situ dislocation tomography.

3.
J Electron Microsc (Tokyo) ; 59(5): 419-26, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20630858

RESUMO

Cryo-electron microscopy of vitreous sections (CEMOVIS) and cryo-electron tomography (cryo-ET) of vitrified specimens are gradually gaining popularity. However, similar to the conventional methods, these techniques tend to produce different images of the same sample. In CEMOVIS, the mechanical stress caused by sectioning may cause inaccuracies smaller than those caused by crevasses. Therefore, we examined Escherichia coli cells by using CEMOVIS and cryo-ET to determine the differences in the computed sizes of the envelope layers, which are smaller than crevasses. We found that the width of the periplasmic space in vitreous sections and tomograms was 12 and 14 nm, respectively; furthermore, while the distance between the outer membrane (OM) and the peptidoglycan (PG) layer was almost equal (11 nm) in the two techniques, that between the plasma membrane (PM) and PG was clearly different. Thus, the observed size difference can be mainly attributed to the PM-PG distance. Since our data were obtained from images acquired using the same microscope in the same conditions, the size differences cannot be attributed to microscope-related factors. One possible factor is the angle of the cutting plane against the long axis of the cell body in CEMOVIS. However, the same PG-OM distance in both methods may exclude the variations caused by this factor. Furthermore, the mechanical stress caused by vitreous sectioning or high-pressure freezing may result in shrinkage. If this shrinkage is responsible for the nanometre-scale deformation in CEMOVIS, this factor will have to be considered in determining the molecular resolution obtained by CEMOVIS.


Assuntos
Parede Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli K12/ultraestrutura , Membrana Celular/ultraestrutura , Peptidoglicano/ultraestrutura , Periplasma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...